
eXtreme Data 
Engineering
Kurtis Seebaldt, Director of Engineering

Artium (builds your products, internal capabilities, tech teams, & leadership skills)



thisisartium.com

Why Data Engineering?

Source: Monica Rogati https://hackernoon.com/the-ai-hierarchy-of-needs-18f111fcc007

The increasing complexity of data 

and data infrastructure requires 

software engineering discipline to 

support the needs of data science.



thisisartium.com 3

The Data Swamp
Data requests start small, but soon grow 
out of control.

• One off data imports 

• Ad hoc ETL scripts

• Manual, repetitive, time-consuming

• Data in various locations and formats

• No clear canonical source

• Not up-to-date



thisisartium.com 4

Challenges

Principles and practices need to be adapted to the complex data environment.

• Data infrastructure is complex

• Code deployment is not straightforward

• Few established patterns in the data environment

• Deploying code is not straightforward



Test Driven Development

• Write code in a local 
development environment

• Test first data transformations

• Commit to source control

01 Continuous Delivery

• Run tests on every commit

• Package code into libraries 
and/or containers

• Automated deploys to staging 
and production environments

02 Infrastructure as Code

• Automate provisioning of 
infrastructure

• Document configuration

• Replicate environments

03

eXtreme Data Engineering
Manage data and infrastructure by implementing best practices and methodologies.



Data for energy and gas: a 2-year journey

1. Data in many locations

2. One off data loads

3. Ad hoc scripts or ETL jobs

1. Takes too much time to ingest a new data 
source

2. Hard to know what is running

3. Failed jobs are hard to track

4. Making changes is difficult and error prone

1. Build initial data lake infrastructure

2. Build individual pipelines (new+old, in priority 
order) based on need

3. Test driven development

4. Continuous Integration

5. Automated deployments to a demo 
environment

6. Automated provisioning of data infrastructure

7. Repeatable production releases

Initial Landscape

Issues

Goals



Test Driven Development

• Code can by developed and run on local development 
machine

• Unit test transformation functions for fast feedback

• Integration tests for pipeline job



thisisartium.com 8

def test_converts_dates(spark):

input = spark.read.format("csv").load("fixtures/austin_traffic/raw")

output = transform_traffic_csv(spark, input)

expected = spark.createDataFrame(

[

(

"C163BCD1CF90C984E9EDA4DBA311BCA369A7D1A1_1528871759",

isoparse("2018-06-13T06:35:59.000Z"),

isoparse("2018-06-13T09:00:03.000Z"),

),

],

["traffic_report_id", "published_date", "traffic_report_status_date_time"],

)

assert_df_equality(

output.select(

"traffic_report_id", "published_date", "traffic_report_status_date_time"

),

expected,

)



CI / CD

• Run all tests on every check in

• Package code into libraries

• Deploy to demo/staging environment

• Libraries

• Containers

• Other configuration (Airflow DAGs, etc.)

• Tag commits to trigger production deploys



thisisartium.com

Infrastructure as Code

Use IaC tools such as Terraform to automate provisioning:

• Networking (VPC)

• Blob Storage (S3)

• Orchestrator (Airflow)

• Compute (Databricks, EMR)

• Credential Storage (AWS Secrets Manager)



thisisartium.com 11

Spending the time and effort to build good 
engineering practices:

• Enables ingesting and sharing new data sources 
quickly

• Produces fewer defects and data quality issues

• Eases ramp up new team members

• Allows team to focus on more complex, 
interesting, high-value data needs

Release Early, Release Often



Example using AWS Glue

https://github.com/kseebaldt/samplegluepipelines



Thank You
kurtis@thisisartium.com

Our mission is to empower every organization with 

the software development capabilities to achieve 

their vision of the future.


